Характеристики химического состава крови человека

Диагностика химического состава крови

Выявление химического состава крови называется биохимическим анализом. На данный момент этот анализ является самым универсальным и информативным. С него начинается любое обследование.

Биохимический анализ крови позволяет оценить работу всех органов и систем организма. В показатели биохимического анализа крови входят белки, липиды, ферменты, кровяные тельца, электролитный состав плазмы крови.

Диагностическую процедуру можно разделить на 2 этапа: подготовка к анализу и сам забор крови. Подготовительные процедуры очень важны, так как они помогают снизить вероятность ошибки в результатах анализа. Несмотря на то, что состав крови достаточно постоянен, показатели крови реагируют на любое воздействие на организм. Так, например, показатели крови могут меняться при стрессах, перегревании, активных физических нагрузках, неправильном питании и при воздействии некоторых препаратов.

Если правила подготовки к биохимическому анализу крови были нарушены, возможны ошибки в результате анализов.

За несколько дней до сдачи крови рекомендуется воздержаться от больших физических нагрузок, курения, приема алкогольных напитков, жирной и богатой белками пищи, фаст-фуда и консервантов, а также прекратить прием всех препаратов.

Обилие жиров в крови приводит к тому, что сыворотка крови сворачивается слишком быстро и становится непригодной для анализа. Кровь сдается натощак и желательно с утра. За 8-10 часов до сдачи анализа не рекомендуется ничего есть или пить, кроме чистой негазированной воды.

Полезное видео — Биохимический анализ крови:

При отклонении некоторых показателей анализ крови желательно повторить, чтобы исключить возможность ошибки. Забор крови проводится в лаборатории медперсоналом. Кровь берется из вены. Пациент может при этом сидеть или лежать, если плохо переносит процедуру. Предплечье пациента перетягивают жгутом, а из вены на сгибе локтя с помощью шприца или специального катетера берется кровь. Кровь собирается в пробирку и передается для микроскопического исследования в лабораторию.

Вся процедура забора крови занимает не более 5 минут. Она довольно безболезненна, если проводится опытным специалистом. Результаты выдаются пациенту на следующий день. Расшифровкой должен заниматься врач. Все показатели крови оцениваются вместе. Отклонение в единичном показателе может быть результатом ошибки.

При повышенном содержании калия в крови возникает мышечная слабость, нарушение работы сердца, в тяжелых случаях гипергликемия приводит к параличу дыхательных мышц.

Клетки

Кровь — это неоднородная структура, сформированная из плазмы и множества взвешенных в ней клеток. В составе крови лейкоциты, тромбоциты и эритроциты занимают около 40-45% от общего объема.

Эта клетка, являющаяся красным кровяным телом, не имеет ядра.

Кровь, ее состав, свойства и функции Понятие внутренней среде организма

Кровь (haema, sanguis) — это жидкая ткань, состоящая из плазмы и взвешенных в ней кровяных клеток. Кровь заключена в систему сосудов и находится в состоянии непрерывного движения. Кровь, лимфа, межтканевая жидкость являются 3 внутренними средами организма, которые омывают все клетки, доставляя им необходимые для жизнедеятельности вещества, и уносят конечные продукты обмена. Внутренняя среда организма постоянна по своему составу и физико-химическим свойствам. Постоянство внутренней среды организма называется гомеостаз и является необходимым условием жизни. Гомеостаз регулируется нервной и эндокринной системами. Прекращение движения крови при остановке сердца приводит организм к гибели.

Функции крови:

Транспортная (дыхательная, питательная, экскреторная)

Защитная (иммунная, защита от кровопотери)

Гуморальная регуляция функций в организме.

КОЛИЧЕСТВО КРОВИ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КРОВИ

Кровь составляет 6-8% массы тела. Новорожденные имеют до 15%. В среднем у человека 4,5 – 5 л. Кровь, циркулирующая в сосудах – периферическая, часть крови содержится в депо (печень, селезенка, кожа) – депонированная. Потеря 1/3 крови ведет к гибели организма.

Удельный вес (плотность) крови – 1,050 – 1,060.

Он зависит от количества эритроцитов, гемоглобина и белков в плазме крови. Он увеличивается при сгущении крови (обезвоживание, физические нагрузки). Снижение удельного веса крови наблюдается при притоке жидкости из тканей после кровопотери. У женщин несколько ниже удельный вес крови, т. к. у них меньше количество эритроцитов.

Вязкость крови 3— 5, превышает вязкость воды в 3 — 5 раз (вязкость воды при температуре + 20°С принята за 1 условную единицу).

Вязкость плазмы – 1,7-2,2.

Зависит вязкость крови от количества эритроцитов и белков плазмы (в основном

фибриногена) в крови.

От вязкости крови зависят реологические свойства крови – скорость кровотока и

периферическое сопротивление крови в сосудах.

Вязкость имеет разную величину в разных сосудах (самая высокая в венулах и

венах, пониже в артериях, самая низкая в капиллярах и артериолах). Если бы

вязкость была бы одинаковая во всех сосудах, то сердцу пришлось бы развивать

мощность в 30-40 раз больше, чтобы протолкнуть кровь через всю сосудистую

Вязкость увеличивается при сгущении крови, обезвоживании, после физических

нагрузок, при эритремиях, некоторых отравлениях, в венозной крови, при введении

препаратов – коагулянтов (препаратов, усиливающих свертывание крови).

Уменьшается вязкость при анемиях, при притоке жидкости из тканей после кровопотери, при гемофилии, при повышении температуры, в артериальной крови, при введении гепарина и др. противосвертывающих средств.

Реакция среды (рН) – в норме 7,36 7,42. Жизнь возможна, если рН от 7 до 7,8.

Состояние, при котором происходит накопление в крови и тканях кислых эквивалентов, называется ацидоз (закисление), рН крови при этом уменьшается (меньше 7,36). Ацидоз может быть:

газовым – при накоплении СО2 в крови (СО2+ Н2О Н2СО3 – накопление кислых эквивалентов);

метаболическим (накопление кислых метаболитов, например при диабетической коме накопление ацетоуксусной и гамма-аминомаслной кислот).

Ацидоз приводит к торможению ЦНС, коме и смерти.

Накопление щелочных эквивалентов называется алкалоз (защелачивание) -увеличение рН больше 7,42.

Алкалоз также может быть газовым, при гипервентиляции легких (если выведено слишком большое количество СО2), метаболическим – при накоплении щелочных эквивалентов и чрезмерном выведении кислых (неукротимая рвота, поносы, отравления и др.) Алкалоз приводит к перевозбуждению ЦНС, судорогам мышц и смерти.

Поддержание рН достигается за счет буферных систем крови, которые могут связывать гидроксильные (ОН-) и водородные ионы (Н +) и тем удерживать реакцию крови постоянной. Способность буферных систем противодействовать сдвигу рН объясняется тем, что при взаимодействии их с Н+ или ОН-, образуются соединения, обладающие слабо выраженным кислотным или основным характером.

Основные буферные системы организма:

белковая буферная система (кислые и щелочные белки);

гемоглобиновая (гемоглобин, оксигемоглобин);

бикарбонатная (бикарбонаты, угольная кислота);

фосфатная (первичные и вторичные фосфаты).

Осмотическое давление крови =7,6-8,1 атм.

Создается оно в основном солями натрия и др. минеральными солями, растворенными в крови.

Благодаря осмотическому давлению вода распределяется равномерно между клетками и тканями.

Изотоническими растворами называют растворы, осмотическое давление которых равно осмотическому давлению крови. В изотонических растворах эритроциты не изменяются. Изотоническими растворами являются: физиологический раствор 0,86% NaCl, раствор Рингера, раствор Рингера-Локка и др.

В гипотоническом растворе (осмотическое давление которого ниже, чем в крови) вода из раствора идет в эритроциты, при этом они набухают и разрушаются –осмотический гемолиз. Растворы с более высоким осмотическим давлением называются гипертоническими, эритроциты в них теряют Н2О и сморщиваются.

Онкотическое давление крови обусловлено белками плазмы крови (в основном альбуминами) В норме составляет 25-30 мм рт. ст. (в среднем 28) (0,03 – 0,04 атм.). Онкотическое давление – это осмотическое давление белков плазмы крови. Является частью осмотического давления (составляет 0,05 % от

осмотического). Благодаря ему вода удерживается в кровеносных сосудах (сосудистом русле).

При уменьшении количества белков в плазме крови — гипоальбуминемии (при нарушении функции печени, голоде) онкотическое давление снижается, вода выходит из крови через стенку сосудов в ткани, при этом возникают онкотические отеки («голодные» отеки).

СОЭскорость оседания эритроцитов, выражается в мм/час. У мужчин СОЭ в норме – 0-10 мм/час, у женщин – 2-15 мм/час (у беременных до 30-45 мм/час).

СОЭ повышается при воспалительных, гнойных, инфекционных и злокачественных заболеваниях, в норме повышена у беременных.

СОСТАВ КРОВИ

Форменные элементы крови – клетки крови, составляют 40 – 45% крови.

Плазма крови — жидкое межклеточное вещество крови, составляет 55 — 60 % крови.

Соотношение плазмы и форменных элементов крови называется гематокритный показатель, т.к. он определяется с помощью гематокрита.

При стоянии крови в пробирке форменные элементы оседают на дно, а плазма остается сверху.

ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ

Эритроциты (красные кровяные тельца), лейкоциты (белые кровяные тельца), тромбоциты (красные кровяные пластины).

ЭРИТРОЦИТЫ – это красные кровяные клетки, лишенные ядра, имеющие

форму двояковогнутого диска, размером 7-8 мкм.

Образуются в красном костном мозге, живут 120 дней, разрушаются в селезенке («кладбище эритроцитов»), печени, в макрофагах.

1) дыхательная – за счет гемоглобина (перенос О2 и СО2);

питательная – могут транспортировать аминокислоты и др. вещества;

защитная – способны связывать токсины;

ферментативная – содержат ферменты. Количество эритроцитов в норме:

у мужчин в 1 мл – 4,1-4,9 млн.

у женщин в 1 мл – 3,9 млн.

у новорожденных в 1 мл – до 6 млн.

у пожилых в 1 мл – менее 4 млн.

Повышение количества эритроцитов в крови называется эритроцитоз.

Виды эритроцитоза:

1.Физиологический (в норме) — у новорожденных, жителей горных районов, после еды и физической нагрузки.

2.Патологический – при нарушениях кроветворения, эритремиях (гемобластозах – опухолевых заболеваниях крови).

Понижение количества эритроцитов в крови называется эритропения. Она может быть после кровопотери, нарушения образования эритроцитов

(железодефицитная, В!2 дефицитная, фолиеводефицитная анемии) и повышенном разрушении эритроцитов (гемолизе).

ГЕМОГЛОБИН (НЬ) – дыхательный пигмент красного цвета, находящийся в эритроцитах. Синтезируется в красном костном мозге, разрушается в селезенке, печени, в макрофагах.

Гемоглобин состоит из белка – глобина и 4 молекул тема. Гем – небелковая часть НЬ, содержит железо, которое соединяется с О2 и СО2. Одна молекула гемоглобина может присоединять 4 молекулы О2.

Норма количества НЬ в крови у мужчин до 132-164 г/л, у женщин 115 -145 г/л. Гемоглобин снижается – при анемиях (железодефицитной и гемолитической), после кровопотери, повышается – при сгущении крови, В12 – фолиево – дефицитной анемии и т.д.

Миоглобин – мышечный гемоглобин. Играет большую роль в снабжении О2 скелетных мышц.

Функции гемоглобина: – дыхательная – перенос кислорода и углекислого газа;

ферментативная – содержит ферменты;

буферная – участвует в поддержании рН крови. Соединения гемоглобина:

1.физиологические соединения гемоглобина:

а) Оксигемоглобин: НЬ + О2 НЬО2

б) Карбогемоглобин: НЬ + СО2 НЬСО2 2. патологические соединения гемоглобина

а) Карбоксигемоглобин – соединение с угарным газом, образуется при отравлениях угарным газом (СО), необратимо, при этом НЬ уже не способен переносить О2 и СО2: НЬ + СО -> НЬО

б) Метгемоглобин (Мет НЬ) – соединение с нитратами, соединение необратимо, образуется при отравлении нитратами.

ГЕМОЛИЗ – это разрушение эритроцитов с выходом гемоглобина наружу. Виды гемолиза:

1. Механический гемолиз – может возникнуть при встряхивании пробирки с кровью.

2. Химический гемолиз – кислотами, щелочами и т.д.

З.Осмотический гемолиз – в гипотоническом растворе, осмотическое давление которого ниже, чем в крови. В таких растворах вода из раствора идет в эритроциты, при этом они набухают и разрушаются.

4. Биологический гемолиз – при переливании несовместимой группы крови, при укусах змей (яд обладает гемолитическим эффектом).

Гемолизированная кровь называется «лаковая», по цвету ярко-красная т.к. гемоглобин переходит в кровь. Гемолизированная кровь непригодна для анализов.

ЛЕЙКОЦИТЫ – это бесцветные (белые) клетки крови, содержание ядро ипротоплазму.Образуются в красном костном мозге, живут 7-12 дней, разрушаются в селезенке, печени, в макрофагах.

Функции лейкоцитов: иммунная защита, фагоцитоз чужеродных частиц.

Свойства лейкоцитов:

Диапедез – способность проходить сквозь стенку сосудов в ткани.

Хемотаксис – движение в тканях к очагу воспаления.

Способность к фагоцитозу – поглощению чужеродных частиц.

В крови у здоровых людей в состоянии покоя количество лейкоцитов колеблетсяот 3,8-9,8 тыс. в 1 мл.

Увеличение количества лейкоцитов в крови называется лейкоцитоз.

Виды лейкоцитоза:

– физиологический лейкоцитоз (в норме) – после еды и физической нагрузки.

– патологический лейкоцитоз – возникает при инфекционных, воспалительных, гнойных процессах, лейкозах.

Понижение количества лейкоцитов в крови называется лейкопения, может быть при лучевой болезни, истощении, алейкемическом лейкозе.

Процентное соотношение видов лейкоцитов между собой называется лейкоцитарная формула.

Соотношение плазмы и форменных элементов крови называется гематокритный показатель, т.

Оставьте первый комментарий

Наряду с ними в крови находятся продукты распада белков и нуклеиновых кислот мочевина, креатин, креатинин, мочевая кислота, подлежащие выведению из организма.

Значение реакций образования афк лейкоцитами

Лейкоциты тоже выполняют важные функции, о которых будет сказано ниже. Сначала поговорим об их внешнем виде. Лейкоциты – это белые тельца, не имеющие фиксированной формы. Образование клеток происходит в селезенке, лимфатических узлах и костном мозге. Кстати, лейкоциты имеют ядра. Их жизненный цикл куда короче, чем у эритроцитов. Они существуют в среднем три дня, после чего разрушаются в селезенке.

Лейкоциты выполняют очень важную функцию – защищают человека от разнообразных бактерий, инородных белков и т.д. Лейкоциты могут проникать через тонкие капиллярные стенки, анализируя среду в межклеточном пространстве. Дело в том, что эти маленькие тельца обладают огромной чувствительностью к различным химическим выделениям, которые образуются при распаде бактерий.

Если говорить образно и понятно, то можно представить себе работу лейкоцитов следующим образом: попадая в межклеточное пространство они анализируют среду и ищут бактерии или продукты распада. Найдя негативный фактор, лейкоциты приближаются к нему и всасывают в себя, то есть поглощают, затем внутри тельца происходит расщепление вредного вещества при помощи выделяемых ферментов.

Эритроциты,
так
же как и другие клетки крови, образуются
из
полипотентных стволовых клеток костного
мозга. Стволовая
клетка превращается в эритроцит за две
недели.

Размножение
и превращение начальной клет­ки
эритроидного ряда в унипотентную
стиму­лирует
ростовой фактор интерлейкин-3
(цитокин),
который синтезируется
Т-лимфоцитами и клетками
костного мозга.

Дальнейшую
пролиферацию и дифференцировку
унипотентной клетки эритроидного ряда
регулирует
гормон эритропоэтин,
который
синтезируется в почках.
Образование эритропоэтина
в почках стимулирует
недостаток кислорода. Хроническая
почечная недоста­точность
подавляет образова­ние
эритропоэтина, что ведет к развитию
анемии.

На
стадии эритробласта
происходят интенсивный синтез
гемог­лобина,
конденсация хроматина, уменьшение
размера ядра и его удаление. Образующийся
ретикулоцит
ещё содержит глобиновую мРНК и активно
синтезирует гемоглобин. Циркули­рующие
в крови ретикулоциты лишаются ри­босом,
ЭР, митохондрий и в течение двух суток
превращаются в эритроциты.

резорбция костей
осуществляется остеокластами
(специализированными макрофагами),
которые применяют АФК для осуществления
этого процесса;

защита организма
от инфекционных агентов, продуктов
распада тканей.

Механизмы фагоцитоза.

Кровь человека

Кровь – это жидкость, текущая по венам и артериям человека. Кровь обогащает мышцы и органы человека кислородом, который необходим для жизнедеятельности организма. Кровь способна вывести все ненужные вещества и отходы из организма. Благодаря сокращениям сердца, кровь постоянно перекачивается. У взрослого человека в среднем, около 6 литров крови.

Сама же кровь состоит из плазмы. Это жидкость, в состав которой входят красные и белые кровяные шарики. Плазма представляет собой жидкое желтоватое вещество, в котором растворяются необходимые для жизнеобеспечения вещества.

В красных шариках содержится гемоглобин, Это вещество, содержащее железо. Их задача, переносить кислород от легких к другим частям тела. Белые же шарики, количество которых значительно меньше числа красных, борются с микробами, которые проникают внутрь организма. Они, так называемые – защитники организма.

Их задача, переносить кислород от легких к другим частям тела.

Химический состав и физические свойства крови

По данным В. А. Андреева и Абдергальдена, в 1000 весовых частях свежей крови различных сельскохозяйственных животных содержится следующее количество различных веществ:

Составные части крови

Виды животных

Крупный рогатый скот

Белок (кроме гемоглобина)

а также небольшое количество калия, окиси железа, кальция, фосфора, магния, хлора и неорганического фосфора.

Основную массу твердых веществ крови составляют белки и в первую очередь гемоглобин. Последний относится к белковым веществам группы хромеопротеидов; он способен кристаллизироваться, причем кристаллы его у разных животных резко различны по своей форме. Гемоглобин – вещество очень нестойкое, что затрудняет определение его химического состава. Оксигемоглобин (по Хоппе) имеет такой состав: С – 53,85%; Н – 7,32%; N- 16,17%; О – 21,84%; S – 0,39%; Fe – 0,43%. Гемоглобин и оксигемоглобин содержатся только в эритроцитах крови.

Читайте также:  Прогулки с ребёнком при насморке: за и против

Среди других белков крови преобладают сывороточный альбумин и глобулин. Оба эти белка (входящие в группу простых белков – протеинов) принадлежат к числу коагулируемых белков, так как свертываются при нагревании. Они легко растворяются в слабых растворах кислот, щелочей и солей, выпадая из этих растворов в виде осадка при дальнейшем прибавлении кислоты. Альбумин легко растворяется также и в воде; глобулин в воде не растворим.

Альбумин характеризуется содержанием серы и отсутствием гликокола. Состав альбумина сыворотки крови лошади, по данным Абдергальдена, такой: С – 53,08%; Н – 6,96%; N – 15,93%; S – 1,9%; О – 22,99%. Аминокислотный состав его следующий:

Аминокислоты

% от общего количества

Аминокислоты

% от общего количества

В чистом виде альбумин крови представляет собой твердое кристаллическое или аморфное вещество беловатого или желтоватого цвета. По Хаммарстену, кровь различных сельскохозяйственных животных содержит альбумина:

Крупный рогатый скот

Содержание альбумина в %

Глобулин имеет следующий элементарный состав (по Абдергальдену): С – 52,71%; Н – 7,01%; N – 15,85%; S – 1,11%; О – 23,32%. Состав аминокислот глобулина такой:

Аминокислоты

% от общего количества

Аминокислоты

% от общего количества

Из приведенных данных видно, что по химическому составу альбумины и глобулины очень близки между собой.

В крови различных видов сельскохозяйственных животных содержится следующее количество глобулинов:

Крупный рогатый скот

Содержание глобулина в крови в %

Альбумин и глобулин свойственны преимущественно плазме крови.

В плазме же крови находится особое белковое вещество – фибриноген. О роли его в свертывании крови говорится ниже. Количество фибриногена в крови обычно равно 0,4-0,5%.

Сахара в крови представлены главным образом глюкозой.

Из липоидов в крови постоянно присутствуют как нейтральные жиры, так и холестерины и лецитины. Количество их колеблется в зависимости от характера пищи животного.

Минеральные вещества крови примерно на 75% состоят из хлоридов и на 25% из карбонатов и фосфатов (последних очень немного).

В 1000 частях плазмы дефибринированной крови (так называемого «серума») разных животных содержится следующее количество различных веществ:

Составные части серума

Виды животных

Крупный рогатый скот

а также небольшое количество калия, кальция, магния, фосфора и хлора.

Таким образом, в плазме крови отсутствует гемоглобин, а следовательно, и окись железа, зато почти все количество Сахаров, жиров и жирных кислот крови сконцентрировано именно в плазме. Для плазмы характерны наличие фибриногена и большое количество альбуминов и глобулинов. Из минеральных веществ преобладают соли Na, особенно NaCl.

Химический состав отсепарированной массы форменных элементов крови разных видов сельскохозяйственных животных такой (в промиллях):

Составные части твердых

элементов крови

Виды животных

Крупный рогатый скот

а также небольшое количество калия, железа, кальция, магния, хлора и фосфора.

Основную массу форменных элементов крови составляют эритроциты (около 99,9%). Красные кровяные тельца содержат около 60% воды и около 40% сухого остатка. 75-85% этого сухого вещества составляет гемоглобин, а остальные 15-25% различные белки (65%) и липоиды (35%). Липоиды находятся преимущественно в оболочке эритроцитов.

Протоплазма белых кровяных телец состоит главным образом из цитопротеидов, а ядра их из нуклеопротеидов, содержащих фосфор.

Реакция крови при определении ее лакмусом слегка щелочная; рН крови различных видов животных колеблется от 7,24 до 7,97. Эти цифры показывают, что реакция крови почти нейтральна и очень немного сдвинута в сторону щелочности.

Температура замерзания свежей крови – 0,56°. Осмотическое давление равно приблизительно 7 ат (почти одинаково у крови разных животных).

Удельный вес крови У = 1,055, эритроцитов У = 1,08, плазмы У = 1,027-1,034. Больший удельный вес эритроцитов позволяет отделять их от плазмы сепарированием.

Вязкость крови, определенная путем изучения быстроты протекания ее через капиллярную трубку, по сравнению с водой равна примерно 5° Э. Она колеблется в зависимости от содержания кровяных телец и процента сухого остатка.

Вязкость дефибрированной крови крупного рогатого скота 2,5° Э; вязкость ее серума 1,75° Э; вязкость форменных элементов 80,0° Э (по данным В. А. Андреева).

Из сказанного видно, что химический состав и физические свойства крови различных видов сельскохозяйственных животных имеют некоторые весьма существенные отличия.

Кровь свиней характеризуется высоким содержанием форменных элементов (42% от общей массы крови), что обусловливает большой выход сухого остатка при выпаривании (21%). Содержание гемоглобина в свиной крови очень высокое (14%). Напротив, прочих белков меньше, чем в крови других сельскохозяйственных животных. Содержание холестерина незначительно, хотя количество нейтральных жиров весьма велико. Из минеральных веществ в крови свиней относительно много солей калия, но мало солей натрия. Плазма крови почти бесцветна, так как лишена пигментов.

Кровь крупного рогатого скота содержит сухого вещества лишь 19%; большее содержание воды обусловливает меньшее количество форменных элементов (35%). Соответственно гемоглобина в крови крупного рогатого скота меньше (10%), чем в крови свиней (14%). Количество же прочих белков в 11/2 раза больше. Жира в крови крупного рогатого скота очень мало, но количество холестерина сравнительно большое. Из солей резко преобладают соли натрия.

Кровь овец по своему составу близка к крови крупного рогатого скота, но имеет еще меньшее количество форменных элементов (около 30%), твердых веществ (18%) и гемоглобина (9%). Количество жира относительно высокое. Состав минеральных веществ почти тот же, что и в крови крупного рогатого скота.

Кровь лошадей содержит 40% форменных элементов и 20% твердых веществ. Количество гемоглобина относительно высокое (12,5%). Холестерина и нейтральных жиров мало.

Последний относится к белковым веществам группы хромеопротеидов; он способен кристаллизироваться, причем кристаллы его у разных животных резко различны по своей форме.

Форменные элементы

Совокупность форменных (имеющих клеточное строение) элементов, выраженная в процентах, называют гематокритом (HCT).

Основные форменные элементы крови

Составными частями гематокрита являются:

  • RВС—эритроциты крови;
  • WBC—лейкоциты;
  • PLT—тромбоциты.

RВС лишены ядра. Почти весь объём клетки гематокрита занимает HB (гемоглобин), сложный железосодержащий хромопротеид, обладающий способностью связывать кислород и карбоксид. Главной работой, которую выполняет RВС, считают транспортировку кислорода из лёгких в ткани и карбоксида из тканей в лёгкие.

В числе прочих функций RВС числятся перенос аминокислот и обеспечение буферных свойств крови.

Специфика строения НВ плода дозволяет обеспечение кислородом тканей плацентарного кровооборота у беременных.

В биохимическом анализе крови свойства RВС используют при исчислении СОЭ (скорости, с которой эритроциты оседают). По значению СОЭ делают заключение о наличии анемии и интенсивности протекания воспалительного процесса.

Клетки WBC (лейкоциты) ответственны за иммунную защиту. Они не только ликвидируют убивают или сдерживают чужеродных агентов, но формируют промежуточную память о них. Информация передаётся последующим поколениям иммунных клеток, формирующих антитела к патологическому агенту, упреждая атаку.

Лейкоциты в крови подразделяются на две разновидности: гранулоциты (содержащие видимые под микроскопом зерно подобные гранулы) и агранулоциты.

Обнаружение гранул в клетках связано с их предварительной окраской. Окрашиваемые пигментом эозином, имеющим кислую реакцию клетки, назвали эозинофилами (ЕОS). Восприимчивые к щелочному красителю стали называть базофилами (BASO), третьим вариантом стали нейтрофилы (NEUT).

Среди агранулоцитов различают моноциты (MONO) и лимфоциты (LYMP).

Каждой разновидности предназначена определённая роль в обороне организма. Процентное соотношение между разновидностями лейкоцитов имеет значительное диагностическое значение и называется лейкоцитарной формулой.

По особенностям отзыва лейкоцитов на происходящие изменения, делают вывод о наличии инфекции и её разновидности, определяют этапы патологического процесса, восприимчивость организма к назначенному лечению. Изучение лейкоформулы позволяет обнаруживать опухолевые патологии. При детальной расшифровке лейкоцитарной формулы, можно установить не только наличие лейкоза или лейкопении, но уточнить, каким видом онкологии человек страдает.

Немаловажное значение имеет обнаружение повышенного вброса в периферийную кровь клеток-предшественников лейкоцитов. Это говорит об извращении синтеза лейкоцитов, приводящего к онкологии крови.

Тромбоциты в крови у человека (PLT) — это мелкие клетки, лишённые ядра, задачей которых является сохранение целостности кровяного русла. PLT способны слипаться, приклеиваться к разнообразным поверхностям, образуя тромбы при разрушениях стенок сосудов. Тромбоциты в крови содействуют лейкоцитам в ликвидации чужеродных агентов, увеличивая просвет капилляров.

В организме ребёнка кровь занимает до 9% массы тела. У взрослого процент самой главной соединительной ткани организма падает до семи, что составляет, не менее пяти литров.

Мужчины, образ жизни которых предполагает более высокие физические напряжения, по сравнению с женщинами, нуждаются в большем количестве кислорода, что проявляется в повышении числа RВС и концентрации гемоглобина.

Состав крови человека

Что представляет собой состав крови человека? Кровь – одна из тканей организма, состоящая из плазмы (жидкой части) и клеточных элементов. Плазма это однородная прозрачная или слегка мутноватая жидкость, имеющая желтый оттенок, которая является межклеточным веществом тканей крови. Плазма состоит из воды, в которой растворены вещества (минеральные и органические), в том числе белки (альбумины, глобулины и фибриноген). Углеводы (глюкоза), жиры (липиды), гормоны, ферменты, витамины, отдельные составляющие солей (ионы) и некоторые продукты обмена веществ.

Вместе с плазмой организм выводит продукты обмена, различные яды и иммунные комплексы антиген-антитело (которые возникают при попадании чужеродных частиц в организм как защитная реакция для их удаления) и все ненужное, мешающее работать организму.

Что представляет собой состав крови человека.

Плазма крови: состав и свойства

Плазма – жидкая часть крови, остающаяся после удаления из нее форменных элементов. Плазма крови является достаточно сложной биологической средой, находящейся в тесной связи с тканевой жидкостью организма. Объем плазмы от всей крови составляет в среднем 55-60% (у мужчин — 51-60%, у женщин — 58-64%). В ее состав входят вода и сухой остаток из органических и неорганических веществ.

Белки плазмы крови представлены альбуминами, а-, β-, у-глобулинами, фибриногеном и минорными белками (лизоцим, интерфероны, b-лизин, гаптоглобин, церуллоплазмин, белки системы комплемента и др.). Содержание белков в плазме крови составляет 60-85 г/л. Белки плазмы крови выполняют ряд важных функций: питательную (источник аминокислот), транспортную (для липидов, гормонов, металлов), иммунную (у-глобулины, являющиеся главной составной частью гуморального звена иммунитета), гемостатическую (участие в остановке кровотечения при повреждении стенки сосуда), буферную (поддержание рН крови), регуляторную функции. Белки обеспечивают также вязкость плазмы и онкотическое давление (25-30 мм рт. ст.).

По функциям белки классифицируют на три большие группы. К 1-й группе относятся белки, обеспечивающие поддержание должной величины онкотического давления (альбумины определяют его величину на 80%) и выполняющие транспортную функцию (а-, β-глобулины, альбумины). Во 2-ю группу входят защитные белки против чужеродных веществ, микро- и макроорганизмов (у-глобулины и др.); 3-ю группу составляют белки, регулирующие агрегатное состояние крови: ингибиторы свертывания крови — антитромбин III; факторы свертывания крови — фибриноген, протромбин; фибринолитические белки — плазминоген и др.

Таблица. Показатели системы крови взрослого человека

Другие органические вещества плазмы крови представлены питательными веществами (глюкозой, аминокислотами, липидами), продуктами промежуточного метаболизма (молочной и пиров и но град ной кислотами), биологически активными веществами (витаминами, гормонами, цитокинами), конечными продуктами обмена белков и нуклеиновых кислот (мочевиной, мочевой кислотой, креатинином, билирубином, аммиаком).

Неорганические вещества плазмы крови составляют около 1% и представлены минеральными солями (катионами Na + , К+ , Са 2+ , Mg 2+ , анионами СI-, HPO 2 4 – НС03 – ), а также микроэлементами (Fe 2+ , Cu 2+ ,Co 2+ , J – , F 4- ), связанными на 90% и более с органическими веществами плазмы. Минеральные соли создают осмотическое давление крови, рН, участвуют в процессе свертывания крови, влияют на се важнейшие функции. В этом смысле минеральные соли наряду с белками можно считать функциональными элементами плазмы. К последним можно также отнести растворимые в плазме молекулы газов 02 и С02.

В случае поступления в кровь щелочи, она реагирует с угольной кислотой, образуя гидрокарбонат NaHC0 3 и воду.

Тема: Кровь. Состав, свойства и функции крови.

Кровь – это жидкая ткань, состоящая из плазмы и взвешенных в ней кровяных телец. Циркуляция крови по замкнутой ССС является необходимым условием поддержания постоянства её состава. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели. Учение о крови и её болезнях называется гематологией.

Физиологические функции крови:

1. Дыхательная – перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким.

2. Трофическая (питательная) – доставляет питательные вещества, витамины, минеральные соли, воду от органов пищеварения к тканям.

3. Экскреторная (выделительная) – выделение из тканей конечных продуктов распада, лишней воды и минеральных солей.

4. Терморегуляторная – регуляция температуры тела путём охлаждения энергоёмких органов и согревание органов, теряющих тепло.

5. Гомеостатическая – поддержание стабильности ряда констант гомеостаза (ph, осмотического давления, изоионии).

6. Регуляция водно-солевого обмена между кровью и тканями.

7. Защитная – участие в клеточном (лейкоциты) и гуморальном (At) иммунитете, в процессе свёртывания для прекращения кровотечения.

8. Гуморальная – перенос гормонов.

9. Креаторная (созидательная) – перенос макромолекул, осуществляющих межклеточную передачу информации с целью восстановления и поддержания структуры тканей тела.

Количество и физико-химические свойства крови.

Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела и равно примерно 4,5-6 л. Кровь состоит из жидкой части – плазмы и взвешенных в ней кровяных клеток – форменных элементов: красных (эритроцитов), белых (лейкоцитов) и кровяных пластинок (тромбоцитов). В циркулирующей крови форменные элементы составляют 40-45%, на долю плазмы приходится 55-60%. В депонированной крови наоборот: форменных элементов – 55-60%, плазмы – 40-45%.

Вязкость цельной крови составляет около 5, а вязкость плазмы – 1,7–2,2 (по отношению к вязкости воды, равной 1). Вязкость крови обусловлена наличием белков и особенно эритроцитов.

Осмотическое давление – это давление, которое оказывают растворённые в плазме вещества. Оно зависит в основном от содержащихся в ней минеральных солей и составляет в среднем 7,6 атм., что соответствует температуре замерзания крови, равной -0,56 – -0,58°С. Около 60% всего осмотического давления обусловлено солями Na.

Онкотическое давление крови – это давление, создаваемое белками плазмы (т.е. их способность притягивать и удерживать воду). Определяется более чем на 80% альбуминами.

Реакция крови определяется концентрацией водородных ионов, которую выражают водородным показателем – pН.

В нейтральной среде pН = 7,0

В кислой – менее 7,0.

В щелочной – более 7,0.

Кровь имеет pН – 7,36, т.е. её реакция слабощелочная. Жизнь возможна в узких пределах смещения pН от 7,0 до 7,8 (т.к. только в этих условиях могут работать ферменты – катализаторы всех биохимических реакций).

Плазма крови – это сложная смесь белков, аминокислот, углеводов, жиров, солей, гормонов, ферментов, антител, растворённых газов и продуктов распада белка (мочевина, мочевая кислота, креатинин, аммиак), подлежащих выведению из организма. Плазма содержит 90-92% воды и 8-10% сухого остатка, главным образом, белков и минеральных солей. Плазма имеет слабощелочную реакцию (pН = 7,36).

Белки плазмы (их более 30) включают 3 основные группы:

· Глобулины обеспечивают транспорт жиров, липоидов, глюкозы, меди, железа, выработку антител, а также α- и β-агглютининов крови.

· Альбумины обеспечивают онкотическое давление, связывают лекарственные вещества, витамины, гормоны, пигменты.

· Фибриноген участвует в свёртывании крови.

Форменные элементы крови.

Эритроциты (от греч. erytros – красный, cytus – клетка) – безъядерные форменные элементы крови, содержащие гемоглобин. Имеют форму двояковогнутых дисков диаметром 7-8 мкм, толщиной – 2 мкм. Они очень гибки и эластичны, легко деформируются и проходят через кровеносные капилляры с диаметром меньшим, чем диаметр эритроцита. Продолжительность жизни эритроцитов составляет 100-120 дней.

В начальных фазах своего развития эритроциты имеют ядро и называются ретикулоцитами. По мере созревания ядро замещается дыхательным пигментом – гемоглобином, составляющим 90% сухого вещества эритроцитов.

Читайте также:  Различные способы: как избавиться от лысины у мужчин

В норме в 1 мкл (1 куб. мм) крови у мужчин содержится 4-5 млн. эритроцитов, у женщин – 3,7-4,7 млн., у новорождённых число эритроцитов достигает 6 млн. Увеличение количества эритроцитов в единице объёма крови называется эритроцитозом, уменьшение – эритропенией. Гемоглобин является основной составной частью эритроцитов, обеспечивает дыхательную функцию крови за счёт транспорта кислорода и углекислого газа и регуляцию рН крови, обладая свойствами слабых кислот.

В норме у мужчин содержится 145 г/л гемоглобина (с колебаниями 130-160 г/л), у женщин – 130 г/л (120-140 г/л). Общее количество гемоглобина в пяти литрах крови у человека составляет 700-800 г.

Лейкоциты (от греч. leukos – белый, cytus – клетка) – бесцветные ядерные клетки. Размер лейкоцитов – 8-20 мкм. Образуются в красном костном мозге, лимфатических узлах, селезёнке. В 1 мкл крови человека в норме содержится 4-9 тысяч лейкоцитов. Количество их колеблется в течение суток, утром снижено, повышается после еды (пищеварительный лейкоцитоз), повышается во время мышечной работы, сильных эмоций.

Увеличение количества лейкоцитов в крови называется лейкоцитозом, уменьшение – лейкопенией.

Продолжительность жизни лейкоцитов составляет в среднем 15-20 дней, лимфоцитов – 20 и более лет. Некоторые лимфоциты живут на протяжении всей жизни человека.

По наличию в цитоплазме зернистости лейкоциты делят на 2 группы: зернистые (гранулоциты) и незернистые (агранулоциты).

В группу гранулоцитов входят нейтрофилы, эозинофилы и базофилы. Имеют в цитоплазме большое количество гранул, где содержатся ферменты, необходимые для переваривания чужеродных веществ. Ядра всех гранулоцитов разделены на 2–5 частей, соединенных между собой нитями, поэтому их ещё называют сегментоядерными лейкоцитами. Молодые формы нейтрофилов с ядрами в виде палочек называются палочкоядерными нейтрофилами, а в виде овала – юными.

Лимфоциты – самые маленькие из лейкоцитов, имеют большое округлое ядро, окружённое узким ободком цитоплазмы.

Моноциты являются крупными агранулоцитами, имеют ядро в виде овала или боба.

Процентное соотношение отдельных видов лейкоцитов в крови называется лейкоцитарной формулой, или лейкограммой:

· эозинофилы 1 – 4%

· нейтрофилы 60 – 70%

· лимфоциты 25 – 30%

У здоровых людей лейкограмма довольно постоянна, и её изменения служат признаком различных заболеваний. Например, при острых воспалительных процессах наблюдается увеличение количества нейтрофилов (нейтрофилия), при аллергических заболеваниях и глистной болезни – увеличение количества эозинофилов (эозинофилия), при вялотекущих хронических инфекциях (туберкулёз, ревматизм и др.) – количество лимфоцитов (лимфоцитоз).

По нейтрофилам можно определить пол человека. При наличии женского генотипа 7 из 500 нейтрофилов содержат особые, специфические для женского пола образования, называемые «барабанными палочками» (круглые выросты диаметром 1,5-2 мкм, соединённые с одним из сегментов ядра посредством тонких хроматиновых мостиков).

Лейкоциты выполняют множество функций:

1. Защитная – борьба с чужеродными агентами (они фагоцитируют (поглощают) чужеродные тела и уничтожают их).

2. Антитоксическая – выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов.

3. Выработка антител, обеспечивающих иммунитет, т.е. невосприимчивость к инфекциям и генетически чужеродным веществам.

4. Участвуют в развитии всех этапов воспаления, стимулируют восстановительные (регенеративные) процессы в организме и ускоряют заживление ран.

5. Обеспечивают реакцию отторжения трансплантата и уничтожение собственных мутантных клеток.

6. Образуют активные (эндогенные) пирогены и формируют лихорадочную реакцию.

Тромбоциты, или кровяные пластинки (греч. thrombos – сгусток крови, cytus – клетка) представляют собой округлые или овальные безъядерные образования диаметром 2–5 мкм (в 3 раза меньше эритроцитов). Тромбоциты образуются в красном костном мозге из гигантских клеток – мегакариоцитов. В 1 мкл крови у человека в норме содержится 180-300 тысяч тромбоцитов. Значительная часть их депонируется в селезёнке, печени, лёгких, в случае необходимости поступает в кровь. Увеличение количества тромбоцитов в периферической крови называется тромбоцитозом, уменьшение – тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2-10 дней.

1. Участвуют в процессе свёртывания крови и растворения кровяного сгустка (фибринолиза).

2. Участвуют в остановке кровотечения (гемостазе) за счёт присутствующих в них биологически активных соединений.

3. Выполняют защитную функцию за счёт склеивания (агглютинации) микробов и фагоцитоза.

4. Вырабатывают некоторые ферменты, необходимые для нормальной жизнедеятельности тромбоцитов и для процесса остановки кровотечения.

5. Осуществляют транспорт креаторных веществ, важных для сохранения структуры сосудистой стенки (без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты).

Свёртывающая система крови. Группы крови. Резус-фактор. Гемостаз и его механизмы.

Гемостаз (греч. haime – кровь, stasis – неподвижное состояние) – это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения. Различают 2 механизма остановки кровотечения:

1. Сосудисто-тромбоцитарный гемостаз способен самостоятельно за несколько минут остановить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением. Он слагается из двух процессов:

– сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

– образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

2. Коагуляционный гемостаз (свёртывание крови) обеспечивает прекращение кровопотери при повреждении крупных сосудов. Свёртывание крови является защитной реакцией организма. При ранении и вытекании крови из сосудов она из жидкого состояния переходит в желеобразное. Образующийся сгусток закупоривает повреждённые сосуды и предотвращает потерю значительного количества крови.

Понятие о резус-факторе.

Кроме АВО системы (системы Ландштейнера) существует система резус, так как кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности, так называемый резус-агглютиноген (резус-фактор). Впервые он был обнаружен в 1940 году К. Ландштейнером и И. Винером в крови обезьяны макаки-резуса.

85% людей имеют в крови резус-фактор. Такая кровь называется резус-положительной. Кровь, в которой резус-фактор отсутствует, называется резус-отрицательной. Особенностью резус-фактора является то, что у людей отсутствуют антирезус-агглютинины.

Группы крови – совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (от лат. transfusio – переливание).

По наличию в крови тех или иных агглютиногенов и агглютининов кровь людей делят на 4 группы, согласно системе Ландштейнера АВО.

ГруппаАгглютиногеныАгглютинины
О(I)нетα и β
А(II)Аβ
B(III)Вα
АВ(IV)АВнет

Иммунитет, его виды.

Иммунитет (от лат. immunitas – освобождение от чего-либо, избавление) – это невосприимчивость организма к возбудителям болезней или ядам, а также способность организма защищаться от генетически чужеродных тел и веществ.

По способу происхождения различают врождённый и приобретённый иммунитет.

Врождённый (видовой) иммунитет является наследственным признаком для данного вида животных (собаки и кролики не болеют полиомиелитом).

Приобретённый иммунитет приобретается в процессе жизни и делится на естественно приобретённый и искусственно приобретённый. Каждый из них по способу возникновения делится на активный и пассивный.

Естественно приобретённый активный иммунитет возникает после перенесения соответствующего инфекционного заболевания.

Естественно приобретённый пассивный иммунитет обусловлен переходом защитных антител из крови матери через плаценту в кровь плода. Таким путём получают иммунитет новорожденные дети по отношению к кори, скарлатине, дифтерии и другим инфекциям. Через 1-2 года, когда антитела, полученные от матери, разрушаются и частично выделяются из организма ребёнка, восприимчивость его к указанным инфекциям резко возрастает. Пассивным путём иммунитет в меньшей степени может передаваться с молоком матери.

Искусственно приобретённый иммунитет воспроизводится человеком в целях предупреждения заразных болезней.

Активный искусственный иммунитет достигается путём прививки здоровым людям культур убитых или ослабленных патогенных микробов, ослабленных токсинов или вирусов. Впервые искусственная активная иммунизация была выполнена Дженнером путём прививок коровьей оспы детям. Эта процедура Пастером была названа вакцинацией, а прививочный материал – вакциной (от лат. vaccа – корова).

Пассивный искусственный иммунитет воспроизводится путём введения человеку сыворотки, содержащей готовые антитела против микробов и их токсинов. Особенно эффективны антитоксические сыворотки против дифтерии, столбняка, газовой гангрены, ботулизма, змеиных ядов (кобра, гадюка и др.). эти сыворотки получают главным образом от лошадей, которых иммунизируют соответствующим токсином.

В зависимости от направленности действия различают также антитоксический, антимикробный и противовирусный иммунитет.

Антитоксический иммунитетнаправлен на нейтрализацию микробных ядов, ведущая роль при нём принадлежит антитоксинам.

Антимикробный (антибактериальный) иммунитетнаправлен на уничтожение микробных тел. Большая роль при нём принадлежит антителам и фагоцитам.

Противовирусный иммунитетпроявляется образованием в клетках лимфоидного ряда особого белка – интерферона, подавляющего размножение вирусов

её реакция слабощелочная.

СОСТАВ, КОЛИЧЕСТВО И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КРОВИ

Состав и количество крови в организме. Кровь — это жидкая соединительная ткань, которая состоит из жидкой части — плазмы и взвешенных в ней клеток — форменных элементов: эритроцитов (красных клеток крови), лейкоцитов (белых клеток крови), тромбоцитов (кровяных пластинок). У взрослого человека форменные элементы крови составляют около 40—48%, а плазма — 52—60%. Это соотношение получило название гематокритного числа (от греч. haima — кровь, kritos — показатель). Состав крови приведен на рис. 4.2.

Общее количество крови в организме взрослого человека в норме составляет 6—8% массы тела, т.е. примерно 5—6 л.

Осмотическое давление крови. Если два раствора разной концентрации разделить полупроницаемой перегородкой, пропускающей только растворитель (например, воду), то вода переходит в более концентрированный раствор. Сила, определяющая движение растворителя через полупроницаемую мембрану, называется осмотическим давлением.

Осмотическое давление крови, лимфы и тканевой жидкости определяет обмен воды между кровью и тканями. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушению в них водного обмена. Это видно на примере эритроцитов, которые

Рис. 4.2. Состав крови в гипертоническом растворе NaCl (много соли) теряют воду и сморщиваются. В гипотоническом растворе NaCl (мало соли) эритроциты, наоборот, набухают, увеличиваются в объеме и могут лопнуть.

Осмотическое давление крови зависит от растворенных в ней солей. Около 60% этого давления создается NaCl. Осмотическое давление крови, лимфы и тканевой жидкости приблизительно одинаково (примерно 290—300 мосм/л, или 7,6 атм) и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает значительных изменений. При избыточном поступлении в кровь вода быстро выводится почками и переходит в ткани, что восстанавливает исходную величину осмотического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соль. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

Поддержание постоянства осмотического давления играет очень важную роль в жизнедеятельности клеток.

Концентрация водородных ионов и регуляция pH крови. Кровь имеет слабощелочную среду: pH артериальной крови равен 7,4; pH венозной крови вследствие большого содержания в ней углекислоты составляет 7,35. Внутри клеток pH несколько ниже (7,0—7,2), что обусловлено образованием в них при метаболизме кислых продуктов. Крайними пределами изменений pH, совместимыми с жизнью, являются величины от 7,2 до 7,6. Смещение pH за эти пределы вызывает тяжелые нарушения и может привести к смерти. У здоровых людей pH крови колеблется в пределах 7,35—7,40. Длительное смещение pH у человека даже на 0,1—0,2 может оказаться гибельным.

Так, при pH 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неминуем летальный исход. Если pH становится равен 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.

В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу pH в кислую сторону. Так, в результате интенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Если это количество молочной кислоты прибавить к объему дистиллированной воды, равному объему циркулирующей крови, то концентрация ионов Н + возрастет в ней в 40 000 раз. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме pH сохраняется за счет работы почек и легких, удаляющих из крови углекислый газ, избыток солей, кислот и щелочей.

Постоянство pH крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Буферная система гемоглобина самая мощная. На ее долю приходится 75% буферной емкости крови. Эта система состоит из восстановленного гемоглобина (ННЬ) и его калиевой соли (КНЬ). Буферные свойства ее обусловлены тем, что при избытке Н + КНЬ отдает ионы К + , а сам присоединяет Н + и становится очень слабо диссоциирующей кислотой. В тканях система гемоглобина крови выполняет функцию щелочи, предотвращая закисление крови вследствие поступления в нее углекислого газа и Н + -ионов. В легких гемоглобин ведет себя как кислота, предотвращая защелачивание крови после выделения из нее углекислоты.

Карбонатная буферная система2С03 и NaHC03) по своей мощности занимает второе место после системы гемоглобина. Она функционирует следующим образом: NaHC03 диссоциирует на ионы Na + и НС03 _ . При поступлении в кровь более сильной кислоты, чем угольная, происходит реакция обмена ионами Na + с образованием слабо диссоциирующей и легко растворимой Н2С03. Таким образом, предотвращается повышение концентрации Н + -ионов в крови. Увеличение в крови содержания угольной кислоты приводит к ее распаду (под влиянием особого фермента, находящегося в эритроцитах, — карбоангидразы) на воду и углекислый газ. Последний поступает в легкие и выделяется в окружающую среду. В результате этих процессов поступление кислоты в кровь приводит лишь к небольшому временному повышению содержания нейтральной соли без сдвига pH. В случае поступления в кровь щелочи, она реагирует с угольной кислотой, образуя гидрокарбонат (NaHC03) и воду. Возникающий при этом дефицит угольной кислоты немедленно компенсируется уменьшением выделения углекислого газа легкими.

Фосфатная буферная система образована дигидрофосфатом (NaH2P04) и гидрофосфатом (Na2HP04) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота. Второе соединение обладает щелочными свойствами. При введении в кровь более сильной кислоты она реагирует с Na2HP04, образуя нейтральную соль и увеличивая количество мало диссоциирующего дигидрофосфата натрия. В случае введения в кровь сильной щелочи она взаимодействует с дигидрофосфатом натрия, образуя слабощелочной гидрофосфат натрия; pH крови при этом изменяется незначительно. В обоих случаях избыток дигидрофосфата и гидрофосфата натрия выделяется с мочой.

Белки плазмы играют роль буферной системы благодаря своим амфотерным свойствам. В кислой среде они ведут себя как щелочи, связывая кислоты. В щелочной среде белки реагируют как кислоты, связывающие щелочи.

Важная роль в поддержании pH крови отводится нервной регуляции. При этом преимущественно раздражаются хеморецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что рефлекторно включает в реакцию периферические органы — почки, легкие, потовые железы, желудочно-кишечный тракт, деятельность которых направлена на восстановление исходных величин pH. Так, при сдвиге pH в кислую сторону почки усиленно выделяют с мочой анион Н2Р04 – . При сдиге pH в щелочную сторону увеличивается выделение почками анионов НР04 -2 и НС03 _ . Потовые железы человека способны выводить избыток молочной кислоты, а легкие — С02.

При различных патологических состояниях может наблюдаться сдвиг pH как в кислую, так и в щелочную среду. Первый из них носит название ацидоз, второй — алкалоз.

Это соотношение получило название гематокритного числа от греч.

Химический состав крови

Химический состав крови, циркулирующей в теле животного, постоянен в результате динамического равновесия между количеством веществ, поступающих в кровь и выделяемых ею.

В крови содержатся белки, жиры, углеводы, минеральные вещества, ферменты, витамины и гормоны. У животных разных видов содержание указанных компонентов неодинаково.

Количество воды в крови крупного рогатого скота с возрастом уменьшается. Наоборот, содержание общего азота у взрослого скота выше, чем у телят. Увеличение содержания общего азота отмечается с повышением упитанности крупного рогатого скота. Аналогично увеличивается и содержание сухого остатка в крови. Наибольшее количество белка в крови крупного рогатого скота установлено в возрасте до 3 лет, в дальнейшем оно снижается и достигает минимума к 12 годам.

Читайте также:  Орви в первом триместре беременности

Минеральный состав крови довольно разнообразен. При этом наибольшее количество неорганических веществ содержится в форменных элементах. Так, общее содержание минеральных веществ в крови составляет 0,9 %, а в форменных элементах 1,2 %.

В состав крови входят также витамины и гормоны. К витаминам относятся тиамин (B1), рибофлавин (В2), аскорбиновая кислота (С), антиксерофтальмический (А), антирахитический (D), биотин (Н), пантотеновая кислота (В3), токоферол (Е), антигеморрагический (К), кобаламин (В12).

Гормоны — это физиологически активные вещества, являющиеся специфическими продуктами обмена веществ, выделяемыми в кровь и тканевую жидкость железами внутренней секреции. Так, в крови обнаружены инсулин, адреналин, гормоны гипофиза, а также половых и молочных желез.

Из многочисленных ферментов следует отметить. каталазу, регулирующую окислительно-восстановительные процессы, амилазу, расщепляющую крахмал, липазу, расщепляющую жиры, а также протеолитические ферменты, под действием которых происходит распад белков, — пепсин, трипсин и химотрипсин.

Постоянство реакции среды крови поддерживается благодаря наличию в ней буферных систем — карбонатной, фосфатной и белковой. Карбонатный буфер поддерживает на постоянном уровне (1/20) соотношение угольной кислоты к ее натриевой соли, а фосфатный буфер — отношение кислого фосфата к щелочному (1/4). Белковые буферные системы включаются в работу по поддержанию pH среды на постоянном уровне после того, как себя исчерпают фосфатный и карбонатный буферы.

Важно знать химический состав плазмы и форменных элементов.

Большую часть сухого остатка плазмы и форменных элементов крови составляют белки, которые представляют собой высокомолекулярные азотистые вещества, отличающиеся разнообразием свойств. При определенных условиях белки способны распадаться на аминокислоты, которые подразделяют на незаменимые, условно незаменимые и заменимые.

Незаменимыми называют аминокислоты, которые не могут синтезироваться в организме и должны поступать с пищей. К ним относятся валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин. Отсутствие в корме хотя бы одной из перечисленных аминокислот приводит к нарушению обмена, приостановке роста и, в конце концов, к гибели животного. Белки, содержащие все незаменимые аминокислоты, называются полноценными .

К условно незаменимым аминокислотам относятся аргинин, гистидин и тирозин. Их образование в животном организме происходит медленно и не всегда удовлетворяет его потребность.

Все белки подразделяют на простые (белки-протеины), которые при гидролизе распадаются только на аминокислоты, и сложные (белки-протеиды), которые при гидролизе, кроме аминокислот, выделяют и небелковую группу. К простым белкам относятся альбумины, глобулины, к сложным — гемоглобин.

По форме частиц белки подразделяют на фибриллярные и глобулярные. К фибриллярным белкам относятся преимущественно белки, входящие в состав шкуры, кости, копыт, волоса, т. е. выполняющие структурные функции организма. Глобулярные белки выполняют физиологические функции. К ним относятся альбумин, глобулин и миозин.

Основными белками плазмы крови являются сывороточные альбумины, сывороточные глобулины и фибриноген.

Сывороточные альбумины участвуют в регуляции кислотно-щелочного равновесия и играют важную роль в транспортировке различных соединений.

Сывороточные глобулины также участвуют в переносе различных веществ. Они представляют собой смесь альфа-, бета- и гамма-глобулинов, причем гамма-глобулин способен реагировать с чужеродными белками — антигенами. Поэтому они получили название антител. Таким образом, гамма-глобулин является носителем защитных свойств организма.

Содержание различных фракций сывороточных глобулинов в плазме крови животных неодинаково. Однако во всех случаях наибольшее количество из них приходится на долю гамма-глобулина.

Фибриноген содержится в плазме и отсутствует в сыворотке крови. Он участвует в свертывании крови, превращаясь в фибрин.

Перечисленные белки плазмы являются полноценными, так как содержат весь комплекс незаменимых аминокислот. Наиболее ценным из них является фибриноген, в котором содержится больше триптофана (3,5%), лизина (9%) и метионина (2,6%) по сравнению с другими белками плазмы.

Основным белком форменных элементов является гемоглобин. Это сложный белок, состоящий из белковой части глобина и небелковой (простетической) части — гема . Гемоглобин является основной частью эритроцитов и содержится в них в количестве 30-41%. Гемоглобин осуществляет перенос кислорода к клеткам, где протекают интенсивные процессы биологического окисления. Концентрация его в крови различных животных неодинакова вследствие значительных различий в количестве эритроцитов и их величине.

Молекула гемоглобина состоит из четырех субъединиц. Каждая субъединица соединена с гемом. Гем является комплексным соединением протопорфирина IX и железа. Железо в теме находится в центральном ядре и связано с азотом пирроловых колец двумя главными и двумя добавочными валентностями. В процессе окисления: двухвалентное железо переходит в трехвалентное.

Гем у различных животных по своему строению одинаков. Видовые различия гемоглобинов крови различных животных обусловлены ее белковой частью — глобином, отличающимся по сочетанию аминокислот в молекуле. Гем является нестойким соединением. Отщепляясь от глобина, он легко окисляется с образованием гемина, в молекуле

которого железо трехвалентно. При обработке растворов гемоглобина разведенными минеральными щелочами и кислотами выделяется окисленная форма гемагематин. В присутствии уксусной кислоты и поваренной соли гем окисляется и выделяется в виде хлоргемина, а при обработке концентрированной серной кислотой — гематопорфирина.

Нативный глобин можно получить при осторожном прибавлении к раствору гемоглобина соляной или щавелевой кислот. Отщепляемый при этом гемин извлекается диэтиловым эфиром, а глобин осаждается в избытке ацетона или осаждением поваренной солью. Этот метод используют для получения неокрашенного белка глобина из гемоглобина.

В результате окисления тема происходит его обесцвечивание, что имеет важное практическое значение для расширения сферы использования крови и форменных элементов на пищевые цели. Метод окисления гемоглобина крови и форменных элементов с помощью перекиси водорода в присутствии фермента каталазы широко используют на предприятиях мясной промышленности для получения сухой белковой смеси и ее применения в производстве различных мясопродуктов, а также в хлебопечении и производстве кондитерских изделий.

Из приведенных данных видно, что гемоглобин из-за отсутствия аминокислоты изолейцин нельзя отнести к полноценным белкам. Однако по наличию триптофана, метионина данный белок превосходит сывороточный альбумин, а по содержанию лизина — фибриноген и сывороточный глобулин. Все это позволяет сделать вывод о целесообразности его использования в сочетании с другими белками при производстве пищевой и кормовой продукции.

Наряду с белковыми веществами в состав крови и ее фракций входят небелковые азотистые и безазотистые вещества, минеральные вещества, пигменты, витамины, липиды.

К азотистым небелковым веществам относятся мочевина, аммиак, аминокислоты, креатин, креатинин, мочевая кислота, пурины и другие соединения. Безазотистые вещества включают в основном углеводы: глюкозу, фруктозу, гликоген, а также молочную и пировиноградную кислоты.

К минеральным веществам относятся хлориды натрия, калия, магния, бикарбонат натрия, карбонат кальция, сульфат натрия, фосфат кальция, кислые фосфорнокислые соли калия, натрия и др.

Пигменты крови включают гемоглобин, билирубин, билевердин, липохромы, лютеин, уробилин. Липохромы принадлежат к группе каротиноидов, лютеины — растительные пигменты. Так, красно-желтый цвет сыворотки крови крупного рогатого скота обусловлен наличием в ней значительного количества каротинов и ксантофилов, а желтый цвет сыворотки крови свиней вызван крайне незначительным содержанием в ней указанных пигментов.

Липиды в основном представлены нейтральным жиром и продуктами его распада, а также лецитином, кефалином, холестерином.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

выполняющие структурные функции организма.

Переливание крови

при некоторых заболеваниях или кровопотерях человеку делают переливание крови. Большая потеря крови нарушает постоянство внутренней среды организма, кровяное давление падает, уменьшается количество гемоглобина. В таких случаях в организм вводят кровь, взятую у здорового человека.

Переливанием крови пользовались с давних времен, но часто это заканчивалось смертельным исходом. Объясняется это тем, что донорские эритроциты (то есть эритроциты, взятые у человека, отдающего кровь), могут склеиваться в комочки, которые закрывают мелкие сосуды и нарушают кровообращение.

Склеивание эритроцитов — — происходит в том случае, если в эритроцитах донора имеется склеиваемое вещество — агглютиноген, а в плазме крови реципиента (человека, которому переливают кровь) находится склеивающее вещество агглютинин. У различных людей в крови есть те или иные агглютинины и агглютиногены, и в связи с этим кровь всех людей разделена на 4 основные группы по их совместимости

Совместимость крови людей

Группы кровиМожет отдавать кровь группамМожет принимать кровь групп
II, II, III, IVI
IIII. IVI. II
IIIIII. IVI. III
IVIVI, II, III, IV

Изучение групп крови позволило разработать правила ее переливания. Лица, дающие кровь, называются , а лица, получающие ее, — . При переливании крови строго соблюдают совместимость групп крови.

Любому реципиенту можно вводить кровь I группы, так как ее эритроциты не содержат агглютиногены и не склеиваются, поэтому лиц с I группой крови называют универсальными донорами, но им самим можно вводить кровь только I группы.

Кровь людей II группы можно переливать лицам, имеющим II и IV группы крови, кровь III группы — лицам III и IV. Кровь от донора IV группы можно переливать только лицам данной группы, но им самим можно переливать кровь всех четырех групп. Людей с IV группой крови называют универсальными реципиентами.

Переливанием крови лечат малокровие. Оно может быть вызвано влиянием различных отрицательных факторов, в результате чего в крови уменьшается количество эритроцитов, или понижается содержание в них гемоглобина. Малокровие возникает и при больших потерях крови, при недостаточном питании, нарушениях функций красного костного мозга и др. Малокровие излечимо: усиленное питание, свежий воздух помогают восстановить норму гемоглобина в крови.

Процесс свертывания крови осуществляется при участии белка протромбина, который переводит растворимый белок фибриноген в нерастворимый фибрин, образующий сгусток. В обычных условиях в кровеносных сосудах отсутствует активный фермент тромбин, поэтому кровь остается жидкой и не свертывается, но есть неактивный фермент протромбин, который образуется при участии витамина К в печени и костном мозге. Неактивный фермент активируется в присутствии солей кальция и переводится в тромбин при действии на него фермента тромбопластина, выделяемого красными кровяными тельцами — тромбоцитами.

При порезе или уколе оболочки тромбоцитов нарушаются, тромбопластин переходит в плазму и кровь свертывается. Образование тромба в местах повреждения сосудов — защитная реакция организма, предохраняющая его от кровопотери. Люди, у которых кровь не способна свертываться, страдают тяжелым заболеванием — гемофилией.

Мечникова о фагоцитозе и значительной роли в этом процессе лейкоцитов в 1863 г.

ХИМИЧЕСКИЙ СОСТАВ КРОВИ

КРОВЬ

ЖЕЛЧЬ

Желчь – жидкий секрет желтовато-коричневого цвета, отделяется печеночными клетками. В сутки у человека образуется 500–700 мл желчи (10 мл на 1 кг массы тела). Желчеобразование происходит непрерывно, хотя интенсивность этого процесса на протяжении суток резко колеблется. Вне пищеварения печеночная желчь переходит в желчный пузырь, где происходит ее сгущение в результате всасывания воды и электролитов. Относительная плотность печеночной желчи 1,01, а пузырной – 1,04. Концентрация основных компонентов в пузырной желчи в 5–10 раз выше, чем в печеночной (табл. 16.3).

Предполагают, что образование желчи начинается с активной секреции гепатоцитами воды, желчных кислот и билирубина, в результате которой в желчных канальцах появляется так называемая первичная желчь. Последняя, проходя по желчным ходам, вступает в контакт с плазмой крови, вследствие чего между желчью и плазмой устанавливается равновесие электролитов, т.е. в образовании желчи принимают участие в основном два механизма – фильтрация и секреция.

В печеночной желчи можно выделить две группы веществ. Первая группа – это вещества, которые присутствуют в желчи в количествах, мало отличающихся от их концентрации в плазме крови (например, ионы Na + , К + , креатин и др.), что в какой-то мере служит доказательством наличия фильтрационного механизма. Ко второй группе относятся соединения, концентрация которых в печеночной желчи во много раз превышает их содержание в плазме крови (билирубин, желчные кислоты и др.), что свидетельствует о наличии секреторного механизма. В последнее время появляется все больше данных о преимущественной роли активной секреции в механизме желчеобразования. Кроме того, в желчи обнаружен ряд ферментов, из которых особо следует отметить щелочную фосфатазу печеночного происхождения. При нарушении оттока желчи активность данного фермента в сыворотке крови возрастает.

Основные функции желчи. Эмульсификация. Соли желчных кислот обладают способностью значительно уменьшать поверхностное натяжение. Благодаря этому они осуществляют эмульгирование жиров в кишечнике, растворяют жирные кислоты и нерастворимые в воде мыла. Нейтрализация кислоты. Желчь, рН которой немногим более 7,0, нейтрализует кислый химус, поступающий из желудка, подготавливая его для переваривания в кишечнике. Экскреция . Желчь – важный носитель экскрети-руемых желчных кислот и холестерина. Кроме того, она удаляет из организма многие лекарственные вещества, токсины, желчные пигменты и различные неорганические вещества, такие, как медь, цинк и ртуть. Растворение холестерина. Как отмечалось, холестерин, подобно высшим жирным кислотам, представляет собой нерастворимое в воде соединение, которое сохраняется в желчи в растворенном состоянии лишь благодаря присутствию в ней солей желчных кислот и фосфатидилхолина. При недостатке желчных кислот холестерин выпадает в осадок, при этом могут образовываться камни. Обычно камни имеют окрашенное желчным пигментом внутреннее ядро, состоящее из белка. Чаще всего встречаются камни, у которых ядро окружено чередующимися слоями холестерина и билирубината кальция. Такие камни содержат до 80% холестерина. Интенсивное образование камней отмечается при застое желчи и наличии инфекции. При застое желчи встречаются камни, содержащие 90–95% холестерина, а при инфекции могут образовываться камни, состоящие из билирубината кальция. Принято считать, что присутствие бактерий сопровождается увеличением β-глюкуронидазной активности желчи, что приводит к расщеплению конъюгатов билирубина; освобождающийся билирубин служит субстратом для образования камней.

Кровь – жидкая ткань, осуществляющая в организме транспорт химических веществ (в том числе кислорода), благодаря чему происходит интеграция биохимических процессов в различных клетках и межклеточных пространствах в единую систему. Кроме того, кровь выполняет защитную, регулятор-ную, терморегуляторную и другие функции.

Кровь состоит из плазмы и взвешенных в ней форменных элементов. К последним относятся эритроциты, лейкоциты и тромбоциты. Объем крови в норме составляет в среднем у мужчин 5200 мл, у женщин – 3900 мл.

На долю плазмы приходится около 55% от объема крови. Эритроциты составляют основную массу форменных элементов – 44% от общего объема крови, в то время как на долю других клеток приходится лишь около 1%.

В норме относительная плотность цельной крови 1,050–1,064, плазмы – 1,024–1,030, клеток – 1,080–1,097. Кровь обладает значительной вязкостью благодаря высокому содержанию белка и эритроцитов. Вязкость крови в 4–5 раз выше вязкости воды.

Важный физико-химический показатель – осмотическое давление плазмы крови. Оно определяется осмотической концентрацией, т.е. суммой всех частиц, находящихся в единице объема. При температуре 37°С осмотическое давление плазмы крови

7,6 атм. Эта величина в основном обусловлена содержащимися в крови хлоридом натрия и другими низкомолекулярными веществами; около 0,03 атм приходится на долю белков, главным образом альбуминов, и называется коллоидно-осмотическим, или онкоти-ческим, давлением.

Тесная взаимосвязь крови со всеми тканями организма позволяет обнаруживать (путем исследования крови больного) патологические изменения в организме, следить за развитием патологического процесса и судить об эффективности терапевтических мероприятий.

Химический состав крови в норме относительно постоянен. Это объясняется наличием в организме мощных регулирующих механизмов (ЦНС, гормональная система и др.), обеспечивающих взаимосвязь в работе таких важных для жизнедеятельности органов и тканей, как печень, почки, легкие и сердечно-сосудистая система.

Все случайные колебания в составе крови в здоровом организме быстро выравниваются. Напротив, при многих патологических процессах отмечаются более или менее резкие сдвиги в химическом составе крови.

Важнейшие органические компоненты цельной крови и плазмы человека приведены в табл. 17.1.

Из данных табл. 17.1 видно, что в крови содержится множество различных органических компонентов. Большую часть сухого остатка крови составляют белки.

Дата добавления: 2014-11-20 ; Просмотров: 590 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

К последним относятся эритроциты, лейкоциты и тромбоциты.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: