Организация и функция структур бактериальной клетки

Строение, химический состав и функции клеточных струк­тур бактериальной (прокариотной) клетки.

Обязательными клеточными структурами у преобладающего большинства бак­терий являются: клеточная стенка, цитоплазматическая мемб­рана (ЦП*М), ядерный аппарат (нуклеоид) и рибосомы (рис.3).

Рис. 3. Схема строения бактериальной клетки: 1 — капсула; 2 — клеточная стенка; 3 — цитоплазмати-ческая мембрана; 4— цитоплазма; 5 — мезосомы; 6 — рибосомы; 7 — полисахаридные гранулы; 8 — нуклео-ид; 9 — включения серы; 10 — жировые капли; 11 — полифосфатные гранулы; 12 — внутриплазматические мембранные образования; 13 — базальное тельце; 14 — жгутики

Клетка снаружи покрыта жесткой клеточной стенкой.Она придает форму клетке, предохраняет ее от неблагоприятных внешних тепловых и механических воздействий, защищает клетку от проникновения в нее избытка воды.

У некоторых бактерий на наружной .поверхности клеточной стенки образу­ются капсулыили слизистый слой. Капсула чаще всего состо­ит из полисахаридов (декстрана, левана), реже — из полипептидов. Капсула — необязательная структура бактериальной клетки. Иногда капсулы служат источником запасных пита-тательных веществ. Например, капсулы из полисахаридов об­разуются у клеток лейконостока на средах с значительным количеством углеводов.

По химическому составу и строению клеточной стенки бак­терии делятся на 2 большие группы: грамположительные и грамотрицательные бактерии (Трам+ и Грам – ).

Рис. 4. Схема строенияклеточных стенок грамположительных и грамотрицательных бактерий.

Названы так по имени датского ученого Кристиана Грама, предложив­шего специальный способ ок­раски бактерий (окраска по Граму). После окраски препа­рат бактерий обрабатывают спиртом или ацетоном, в ре­зультате чего Грам – бакте­рии обесцвечиваются, а Грам + бактерии сохраняют темно-фиолетовую окраску. Окраска по Граму имеет важное значе­ние для классификации бакте­рий.

Как у Грам + , так и у Грам – бактерий жесткость клеточной стенки обусловлена наличием полимерного соединения пептидогликана (муреина), но у Грам+ бактерий его количество значительно больше (до 90—95% от веществ кле­точной стенки), а у Грам – 5 — 10%. Пептидогликановый слой у Грам+ бактерий плотно прилегает к ЦПМ (рис. 4).

Кроме того, в клеточных стенках Грам+ бактерий имеются другие полимеры — тейхоевые кислоты, которые так же, как и пептидогликан, имеются только у прокариот, а у эукариот не обнаруживаются. В составе клеточной стенки Грам+ бакте­рий в небольших количествах содержатся полисахариды. У Грам+ бактерий клеточная стенка имеет толщину 20—80 нм, юна однослойная и плотная.

Клеточная стенка Грам – бактерий значительно тоньше — 10—13 нм, но она многослойная. Пептидогликан образует только внутренний слой, неплотно прилегающий к ЦПМ. К внутреннему слою прилегает наружная мембрана, состоящая из липопротеидов и липополисахаридов. Тейхоевые кислоты в клеточной стенке Грам – бактерий отсутствуют.

Наружная мембрана Грам – бактерий препятствует проник­новению в клетку токсических веществ, поэтому Грам – бакте­рии значительно устойчивее по сравнению с Грам+ бактериями к действию антибиотиков, ядовитых химических и др. веществ. Поэтому в пищевых производствах борьба с Грам – бактериями с помощью дезинфицирующих средств не всегда эффективна.

Цитоплазматическая мембрана (ЦПМ) расположена под клеточной стенкой, ограничивает содержимое клетки и играет очень важную роль в жизни клетки. Нарушение ее целостности приводит к гибели клетки. Химически ЦПМ представляет со­бой белково-липидный комплекс, состоящий из белков (50— 75% от массы ЦПМ), липидов (в основном фосфолипиды — 15 — 45%) и небольшого количества углеводов. В ЦПМ имеются поры, через которые в клетку поступают питательные ве­щества и выводятся конечные продукты обмена веществ.

Поскольку у прокариот ЦПМ единственная, в отличие от эукариот, мембранная структура в клетке, то она выполняет много функций: осуществляет транспорт питательных веществ из внешней среды внутрь * клетки с помощью специфических белков — переносчиков; на внутренней стороне ЦПМ располо­жены окислительно-восстановительные ферменты, участвую­щие в снабжении клетки энергией, и гидролитические фермен­ты, осуществляющие расщепление высокомолекулярных соеди­нений. У некоторых бактерий ЦПМ образует впячивания внутрь клетки — мезосомы, имеющие различные формы и раз­меры и выполняющие различные функции (участие в энерге­тических процессах, в процессах деления клетки, процессе раз­множения и др.).

Цитоплазма— это внутреннее содержимое клетки, окружен­ное ЦПМ, представляющая собой полужидкую коллоидную систему. Она содержит воду до 70—80% от массы клетки, фер­менты, аминокислоты, набор РНК, субстраты и продукты об­мена веществ клетки. В цитоплазме располагаются остальные жизненно важные структуры клетки — нуклеоид, рибосомы, а также запасные вещества различной природы.

Нуклеоидпредставляет собой ядерный аппарат прокариот. Это компактное образование, занимающее центральную область в цитоплазме, состоящее из двойной спирально закрученной нити ДНК, замкнутой в кольцо, которая еще называется бак­териальной хромосомой. Бактериальная хромосома в одной точке соприкасается с мезосомой. В развернутом виде нить ДНК может иметь длину более 1 мм, т. е. почти в 1000 раз больше длины бактериальной клетки. Вся генетическая инфор­мация у прокариот, так же как и у эукариот, заключена -в ДНК, поэтому функция нуклеоида состоит в передаче наслед­ственных свойств. Перед, делением клетки нуклеоид делится пополам. Ядерный аппарат прокариот не имеет ядрышка и не отделен от цитоплазмы ядерной мембраной, как это имеет место у эукариот.

Рибосомы— небольшие гранулы, рассеянные в цитоплазме, состоящие из РНК (60%) и белка (40%). Они играют очень важную физиологическую роль, поскольку на них происходит синтез белков. В молодых клетках наблюдается повышенное содержание рибосом.

В клетках бактерий, помимо обязательных клеточных структур, имеются включения запасных веществ. Они накапли­ваются при избытке тех или иных питательных веществ в сре­де, а расходуются при голодании клетки. К запасным вещест­вам клетки бактерий относятся полисахариды, включающие гликоген, крахмал и гранулезу; жировые капли, содержа­щие липиды (жиры) в виде поли-р-оксимасляной кислоты, которая синтезируется на средах богатых углеводами. Поли-р-оксимасляная кислота встречает­ся только у прокариот и ее количест­во может достигать 50% от сухой массы клеток. Гранулеза и липиды служат хорошим источником углеро­да и энергии для клетки. У многих прокариот в клетках накапливаются полифосфаты в виде гранул, называе­мых также валютиновыми или мета-хроматиновыми зернами. Они исполь­зуются клетками как источник фос­фора.

В клетках некоторых бактерий, участвующих в превращениях серы,, откладывается молекулярная сера в виде особых включений.

Цитоплазматическая мембрана ЦПМ расположена под клеточной стенкой, ограничивает содержимое клетки и играет очень важную роль в жизни клетки.

Структура бактериальной клетки

Структурные компоненты бактериальной клетки делят на 2 вида:

основные структуры (клеточная стенка, цитоплазматическая мембрана с ее производными, цитоплазма с рибосомами и различными включениями, нуклеоид);

Читайте также:  Как промывают миндалины при тонзиллите видео

временные структуры (капсула, слизистый чехол, жгутики, ворсинки, эндоспоры, образующиеся лишь на определенных этапах жизненного цикла бактерий).

Основные структуры.

Клеточная стенка находится с внешней стороны от цитоплазматической мембраны. Цитоплазматическая мембрана не входит в состав клеточной стенки. Функции клеточной стенки:

– защита бактерий от осмотического шока и других повреждающих факторов;

– определение формы бактерий;

– участие в метаболизме бактерий.

Клеточная стенка пронизана порами, через которые происходит транспорт экзотоксинов бактерий. Толщина клеточной стенки составляет 10–100 нм. Основной компонент клеточной стенки бактерий – пептидогликан или муреин, состоящий из чередующихся остатков N-ацетил-N-глюкозамина и N-ацетилмурамовой кислоты, соединенных гликозидными связями.

В 1884 году Х. Грам предложил метод окраски бактерий с помощью генцианвиолета, йода, этилового спирта и фуксина. Все бактерии в зависимости от окраски по Граму подразделяют на 2 группы: грамположительные и грамотрицательные бактерии. Клеточная стенка грамположительных бактерий плотно прилегает к цитоплазматической мембране, ее толщина составляет 20-100 нм. В ней имеются тейхоевые кислоты (полимеры глицерина или рибита), а также в небольших количествах полисахариды, белки и липиды. Клеточная стенка грамотрицательных бактерий многослойна, ее толщина составляет 14-17 нм. Внутренний слой (пептидогликан) образует тонкую непрерывную сетку. Внешний слой состоит из фосфолипидов, липопротеина и белков. Белки наружной мембраны прочно связаны с пептидогликановым слоем.

Различное содержание пептидогликана в клеточной стенке обусловливает различную окраску бактерий. У грамотрицательных бактерий содержание пептидогликана составляет 1-10%, а у грамположительных – от 50 до 90%. Грамположительные бактерии окрашиваются в синий (фиолетовый) цвет, а грамотрицательные бактерии – в красный цвет.

В некоторых условиях бактерии лишаются способности полностью или частично синтезировать компоненты клеточной стенки, в результате чего образуются протопласты, сферопласты и L-формы бактерий. Сферопласты – это бактерии с частично разрушенной клеточной стенкой. Они наблюдаются у грамотрицательных бактерий. Протопласты – это формы, полностью лишенные клеточной стенки. Они образуются грамположительными бактериями. L-формы бактерий – это мутанты бактерий, частично или полностью утратившие способность синтезировать пептидогликан клеточной стенки (бактерии с дефектной клеточной стенкой). Свое название они получили от названия института Листера в Англии, где были открыты в 1935 году.

Цитоплазматическая мембрана (ЦПМ) и ее производные. Цитоплазматическая мембрана (плазмолемма) – это полупроницаемая липопротеидная структура бактериальной клетки, отделяющая цитоплазму от клеточной стенки. Она составляет 8-15% сухой массы клетки. Ее разрушение приводит к гибели клетки. При электронной микроскопии выявлено ее трехслойное строение. Цитоплазматическая мембрана представляет собой комплекс белков (50-75%) и липидов (15-20%). Основная масса липидов представлена фосфолипидами. Кроме того, в составе мембраны обнаружено небольшое ко­личество углеводов.

ЦПМ бактерий выполняет следующие функции:

– барьерная функция (молекулярное “сито”);

– избирательный перенос различных органических и неорганических молекул и ионов с помощью специальных переносчиков – транслоказ или пермеаз;

– репликация и последующее разделение хро­мосомы.

В процессе роста клетки цитоплазматическая мембрана образует многочисленные впячивания (инвагинаты), получившие название мезосом.

Цитоплазма – это содержимое бактериальной клетки, ограниченное цитоплазматической мембраной. Она состоит из цитозоля и структурных элементов.

Цитозоль – гомогенная фракция, включающая растворимые компоненты РНК, ферменты, продукты метаболизма.

Структурные элементы – это рибосомы, внутрицитоплазматические мембраны, включения и нуклеоид.

Рибосомы – органоиды, осуществляющие биосинтез белка. Они состоят из белка и РНК. Представляют собой гранулы диаметром 15-20 нм. Одна бактериальная клетка содержит от 5000 до 50000 рибосом. Рибосомы являются местом синтеза белка.

В цитоплазме прокариотов обнаруживаются различные включения, представляющие запасные вещества клетки. Из полисахаридов в клетках откладываются гликоген, крахмал и крахмалоподобное вещество – гранулеза. Полифосфаты содержатся в гранулах, называемых волютиновыми, или метахроматиновыми, зернами.

Нуклеоид является ядром у прокариотов. Он состоит из одной замкнутой в кольцо двуспиральной нити ДНК, которую рассматривают как бактериальную хромосому. У нуклеоида отсутствует ядерная оболочка.

Кроме нуклеоида в бактериальной клетке обнаружены внехромосомные генетические элементы – плазмиды, которые представляют собой небольшие кольцевые молекулы ДНК, способные к автономной репликации. Роль плазмид состоит в том, что они кодируют дополнительные признаки, дающие клетке преимущества в определенных условиях существования. Наиболее распространены плазмиды, детерминирующие признаки антибиотикорезистентности бактерий (R-плазмиды), синтез энтеротоксинов (Ent-плазмиды) или гемолизинов (Hly-плазмиды).

К временным структурам относятся капсула, жгутики, пили, эндоспоры бактерий.

Капсула – это слизистый слой над клеточной стенкой бактерии. Вещество капсул состоит из нитей полисахаридов. Капсула синтезируется на наружной поверхности цитоплазматической мембраны и выделяется на поверхность клеточной стенки в специфических участках.

– место локализации капсульных антигенов, определяющих вирулентность, антигенную специфичность и иммуногенность бактерий;

– защита клеток от механических повреждений, высыхания, токсических веществ, заражения фагами, действия защитных факторов макроорганизма;

– способность прикрепления клеток к субстрату.

Жгутики – это органы движения бактерий. Жгутики не являются жизненно важными структурами, поэтому могут присутствовать у бактерий или отсутствовать в зависимости от условий выращивания. Количество жгутиков и места их расположения у разных бактерий неодинаково. В зависимости от этого выделяют следующие группы жгутиковых бактерий:

монотрихи – бактерии с одним полярно расположенным жгутиком;

амфитрихи – бактерии с двумя полярно расположенными жгутиками или имеющие по пучку жгутиков на обоих концах;

лофотрихи – бактерии, имеющие пучок жгутиков на одном конце клетки;

перитрихи – бактерии с множеством жгутиков, расположенных по бокам клетки или на всей ее поверхности.

Химический состав жгутиков представлен белком флагеллином.

К поверхностным структурам бактериальной клетки относятся также ворсинки и пили. Эти структуры участвуют в адсорбции клеток на субстрате (ворсинки, пили общего типа) и в процессах переноса генетического материала (половые пили). Они образованы специфическим гидрофобным белком пилином.

У некоторых бактерий в определенных условиях образуются покоящиеся формы, которые обеспечивают переживание клеток в течение длительного времени в неблагоприятных условиях – эндоспо­ры. Они устойчивы к неблагоприятным факторам внешней среды.

Расположение спор в клетке:

– центральное (возбудитель сибирской язвы);

– субтерминальное – ближе к концу (возбудитель ботулизма);

– терминальное – на конце палочки (возбудитель столбняка).

– монотрихи бактерии с одним полярно расположенным жгутиком;.

Жгутики

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков – у грамположительных и 2 пары дисков – у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка – флагеллина (от flagellum – жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Читайте также:  Кишечная непроходимость: симптомы, лечение, операция

Пили (фимбрии, ворсинки) – нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны – несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми “мужскими” клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми “мужскими” сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры – своебразная форма покоящихся фирмикутных бактерий, т.

Организация и функция структур бактериальной клетки

Главными отличиями прокариотической (бактериальной) клетки от эукариотической является: отсутствие оформленного ядра (т.е. ядерной мембраны), отсутствие внутриклеточных мембран,ядрышек, комплекса Гольджи, лизосом, митохондрий.

Основными структурами бактериальной клетки являются:

Нуклеоид – представляет собой наследственный (генетический) материал бактериальной клетки, представлен 1 молекулой ДНК, замкнутой в кольцо и суперспирализованной (скручена в рыхлый клубок). Длина ДНК около 1мм. Объем информации около 1000 генов (признаков). Нуклеоид не отделен от цитоплазмы мембраной.

Цитоплазма – коллоид, т.е. водный раствор белков, углеводов. Липидов, минеральных веществ, в котором находятся рибосомы, включения, плазмиды.

На рибосомах происходит биосинтез белка. Рибосомы прокариот отличаются от эукариотических более мелкими размерами (70 S).

Включения – запасные питательные вещества бактериальной клетки, а также скопления пигментов. К запасным питательным веществам относятся: гранулы волютина (неорганического полифосфата), гликоген, гранулеза, крахмал, капли жира, скопления пигмента, серы, кальция. Включения, как правило, образуется при выращивании бактерий на богатых питательных средах и исчезает при голодании.

Плазмиды – небольшие кольцевые молекулы ДНК, паразитирующие внутри бактриальной клетки. Кроме собственной генетической информации (F-плазмиды) плазмиды могут нести дополнительную генетическую информацию, полезную для бактериальной клетки. Например, плазмиды могут кодировать фермент, разрушающий пенициллин (пенициллиназа). В этом случае бактерия, зараженная такой плазмидой будет устойчива к пенициллину. Плазмиды, кодирующие гены устойчивости к лекарственным препаратам, называются R-плазмидами (от resistance). Плазмиды, несущие только свою собственныю информацию, называют F- плазмидами.

Клеточная мембрана – ограничивает цитоплазму. Сосотоит из двойного слоя фосфолипидов и встроенных мембранных белков. КМ кроме барьерной и транспортной функций выполняют роль центра метаболической активности (в отличие от эукариотической клетки). Белки мембраны, ответственные за перенос необходимых веществ в клетку, называют пермеазами. На внутренней поверхности КМ находятся ферментные ансамбли , т.е.упорядоченные скопления молекул ферментов, ответственных за синтез энергоносителей – молекул АТФ. КМ может образовывать впячивания в цитоплазму, которые называют мезосомами.Существует два вида мезосом:

Септальные – образуют поперечные перегородки в процессе деления клетки.

Латеральные – служат для увеличения поверхности КМ и повышения скорости обменных процессов.

Нуклеоид, ЦП и КМ образуют протопласт.

Одним из отличительных свойств бактерий является очень высокое внутриклеточное осмотическое давление (от 5 до 20 атм), что является результатом интенсивного обмена веществ. Поэтому для защиты от осмотического шока бактериальная клетка окружена прочной клеточной стенкой.

По строению клеточной стенки все бактерии делятся на 2 группы: Имеющие однослойную клеточную стенку – Грам-положительные. Имеющие двухслойную клеточную стенку – Грам-отрицательные. Названия Грам+ и Грам- имеют свою предисторию. В 1884 датский микробиолог Ганс Христиан Грам разработал оригинальный метод окраски микробов, в результате которого одни бактерииокрашивались в синий цвет (грам+), а другие в красный (грам-). Химическая основа различной окраски бактерий по методу Грама была выяснена сравнительно недавно – около 35 лет назад. Оказалось, что Г- и Г+ бактерии имеют разное строение клеточной стенки. Строение клеточной стенки Г+ бактерий. Основу клеточной стенки Г+ бактерий составляют 2 полимера: пептидогликан и тейхоевые кислоты. Пептидогликан представляет собой линейный полимер, в котором чередуются остатки мурамовой кислоты и ацетилглюкозамина. С мурамовой кислоте ковалентно связан тетрапептид (белок). Нити пептидогликана связаны между собой через пептиды и образуют прочный каркас – основу клеточной стенки. Между нитями пептидогликана находится другой полимер – тейхоевые кислоты(глицерол ТК и рибитол ТК) – полимер полифосфатов. Тейхоевые кислоты выступают на поверхности клеточной стенки и являются главными АГ Г+ бактерий. Кроме этого, в состав клеточной стенки Г+ бактерий входит рибонуклеат Mg. Стенка Г- бактерий состоит из 2-х слоев: внутренний слой представлен моно- или бислоем пептидогликана (тонкий слой) . Наружный слой состоит из липополисахаридов, липопротеина, белков, фосфолипидов. ЛПС всех Г- бактерий обладают токсическими и порогенными свойствами и называются эндотоксинами.

При воздействии некоторых веществ, например пенициллина, нарушается синтез пептидогликанового слоя. При этом из Г+ бактерий образуется протопласт, а из Г- сферопласт ( т.к. сохраняется наружный слой клеточной стенки).

При определенных условиях культивтрования клетки, лишенные клеточной стенки, сохраняют способность к росту и делению, и такие формы называют L- формами (по названи. Института Листера, где было открыто это явление). В некоторых случаях после устранения фактора, тормозящего синтез клеточной стенки L-формы могут превратиться в исходные формы.

Многие бактерии синтезируют слизистое вещество, состоящее из мукополисахаридов, которое откладывается с наружной стороны клеточной стенки, окружая бактериальную клетку слизистым чехлом. Это капсула. Функция капсулы – защита бактерий от фазоцитоза.

Поверхностные структуры бактериальной клетки.

Органы прикрепления к субстрату (адгезии) – пили (фимбрии) или реснички. Начинаются от мембраны клетки. Сосотоят из белка пилина. Число пилей может достигать 400 на 1 клетку.

Читайте также:  Сильное шелушение кожи тела: причины и лечение

Органы передачи наследственной информации – F-пили или sex-пили. F-пили образуются только в том случае, если клетка нечет плазмиду, т.к. белки F-пили кодирует ДНК плазмиды. Они представляют собой тонкую длинную трубочку, которая прикрепляется к другой бактериальной клетке. Через образовавшийся канал плазмида переходит в соседнюю бактериальную клетку.

Органы движения – жгутики – представляют собой спиральные нити. Их длина может превышать их диаметр в 10 и более раз. Жгутики состоят из белка флагеллина. Основание жгутика связано с клеточной мембраной посредством базального тельца. Базальное тельце состоит из системы колец, которые вращаясь передают вращательное движение жгутику. По расположению жгутиком бактерии делятся на моно-, лофо-, амфи-, перитрихи.

При воздействии некоторых веществ, например пенициллина, нарушается синтез пептидогликанового слоя.

Боковая панель

4 стойких мифа о коронавирусе.

Плазмиды

Плазмиды представляют собой небольшие мобильные молекулы ДНК, отдельные от хромосомных факторов наследственности. Эти компоненты обычно содержат генетический материал, повышающий невосприимчивость бактерии к антибиотикам.

Могут передавать свои свойства от одного микроорганизма к другим. Несмотря на все свои особенности, плазмиды не выступают в качестве важных элементов для жизнедеятельности бактериальной клетки.

Споры образуются в случае негативных физических или химических манипуляций над бактерией в результате высушивания или нехватки питательных веществ.

Капсулоподобная оболочка

Капсулоподобная оболочка представляет собой образование, непрочно связанное с клеточной стенкой. Благодаря бактериальным ферментам капсулоподобная оболочка покрывается углеводами (экзополисахаридами) внешней среды, благодаря чему обеспечивается слипание бактерий с разными поверхностями, даже совершенно гладкими.

Например, стрептококки, попадая в организм человека, способны слипаться с зубами и сердечными клапанами.

Функции капсулы многообразны:

  • защита от агрессивных условий внешней среды,
  • обеспечение адгезии (слипанию) с клетками человека,
  • обладая антигенными свойствами, капсула оказывает токсический эффект при внедрении в живой организм.

Рис. 4. Стрептококки способны слипаться с эмалью зубов и вместе с другими микробами являются причиной кариеса.

Рис. 5. На фото поражение митрального клапана при ревматизме. Причина — стрептококки.

защита от агрессивных условий внешней среды,.

§ 42. Морфологические особенности строения птиц

§ 42. Морфологические особенности строения птиц Биологическое разнообразие, использование различных типов питания и освоение всех мало-мальски пригодных для жизни территорий выглядят как большой эволюционный успех птиц. Парадоксально, что эти преимущества были

КЛЕТОЧНОЕ СТРОЕНИЕ ОРГАНИЗМОВ СТРОЕНИЕ КЛЕТКИ.

Ядро в безъядерной клетке

Нуклеоид («подобный ядру») – один из важнейших органоидов в прокариотической клетке, выполняющий функции ядра. Он отвечает за хранение и передачу генетического материала. Нуклеоид представляет собой замкнутую в кольцо молекулу ДНК, соответствующую одной хромосоме. Эта кольцевая молекула выглядит как беспорядочное переплетение нитей. Однако, исходя из ее функций (точное распределение генов по дочерним организмам), становится понятно, что хромосома бактерий имеет высокоупорядоченную структуру.

Как правило, постоянной наружной формы эта органелла не имеет, но ее можно легко различить на фоне гелеподобной цитоплазмы в электронный микроскоп. При исследовании с помощью обычного светового микроскопа бактерию необходимо предварительно окрасить, т. к. в естественном состоянии бактерии прозрачны и незаметны на фоне предметного стекла. После специального окрашивания область ядерной вакуоли бактерии становится отчетливо видна.

Молекула ДНК (нуклеоид) состоит из 1,6 х 107 нуклеотидных пар. Нуклеотид – это отдельный «кирпичик», звено, из которого состоят все ядерные нуклеиновые кислоты (ДНК, РНК). Таким образом, нуклеотид только отдельная малая часть нуклеоида. Длина молекулы ДНК в развернутом состоянии может быть в тысячу раз больше, чем длина самой бактериальной клетки.

Некоторые бактериальные клетки содержат дополнительные хранилища наследственной информации – плазмиды. Это внехромосомные генетические элементы, состоящие из двухцепочечных ДНК. Они намного меньше нуклеоида и содержат «всего» 1500–40 000 пар нуклеотидов. В таких плазмидах может находиться до сотни генов. Их существование может быть полностью автономным, хотя в определенных условиях дополнительные гены легко встраиваются в основную цепочку ДНК.

Если анализ выявил грамположительные бактерии, то есть повод для переживаний.

Капсулы, чехлы и слизистые слои

Капсула – это слизистое образование, покрывающее клетку, обеспечивающее связь с клеточной стенкой и обладающее аморфным строением. Наличие капсулы определяется условием культивирования микроорганизма и его штаммом.

Капсула не является обязательным структурным компонентом клетки, так как бактерии могут при определенных условиях переходить от капсульных к бескапсульным формам.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Химический состав капсул родо- и видоспецифичен. Основными химическими компонентами являются полисахариды гомо- и гетерополимерной природы.

Чехлы обладают тонкой структурой, могут состоять из нескольких слоев и содержать оксиды металлов. Также в их состав могут входить помимо сахаров, белки, липиды, фосфор и др. вещества.

Слизистые слои имеют бесструктурный аморфный вид, с легкостью отделяется от поверхности клетки.

Функции капсул, слизистых веществ и чехлов:

  • защита клети от высыхания, механических повреждений;
  • препятствие для проникновения в клетку бактериофагов;
  • создание дополнительного осмотического барьера;
  • источник запасных питательных веществ;
  • осуществляют связь между клетками в колониях;
  • обеспечивают прикрепление клеток к субстратам.

биполярные политрихи каждый полюс имеет по пучку жгутиков ;.

Организация и функция структур бактериальной клетки

Составные части клеточной стенки, ее компоненты, образуют сложную прочную структуру рис.

Бактериальная клетка. Строение и химический состав

Причем аминокислоты клеточных стенок имеют необычную форму D-стереоизомеры , которая в природе редко встречается.

Размножение

Бактерии размножаются делением. Период от рождения клетки до её деления составляет 20-30 минут. Поэтому бактерии широко распространены на Земле.

Основным отличием бактериальных клеток является отсутствие оформленного ядра.

Что мы узнали?

Одними из составляющих элементов клетки являются органоиды движения. К ним относятся жгутики и реснички, которые образованы с помощью микротрубочек. В их функции входит обеспечить движение одноклеточному организму, продвижение жидкостей внутри многоклеточного организма.

В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные окрашиваются по Граму и грамотрицательные не окрашиваются.

Лекция № 9. Строение прокариотической клетки. Вирусы

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты — одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.

Хромосомная ДНК 5 одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: